Phylogenetic analysis of human metapneumovirus among children with acute respiratory infections in Kuala Lumpur, Malaysia

Nor’e, S.S.1, Sam, I.C.1,3, Mohamad Fakri, E.F.1, Hooi, P.S.3, Nathan, A.M.2, de Bruyne, J.A.2, Jafar, F.1, Hassan, A.1, AbuBakar, S.1 and Chan, Y.F.1*

1Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Paediatrics, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia
3Diagnostic Virology Laboratory, University Malaya Medical Centre, Kuala Lumpur, Malaysia
*Corresponding author: chanyf@ummc.edu.my, chanyf@um.edu.my
Received 13 February 2014; received in revised form 23 March 2014; accepted 25 March 2014

Abstract. Human metapneumovirus (HMPV) is a recently discovered cause of viral respiratory infections. We describe clinical and molecular epidemiology of HMPV cases diagnosed in children with respiratory infection at University of Malaya Medical Centre, Kuala Lumpur, Malaysia. The prevalence rate of HMPV between 2010 and 2012 was 1.1%, and HMPV contributed 6.5% of confirmed viral respiratory infections. The HMPV patients had a median age of 1.6 years, and a median hospital admission of 4 days. The most common clinical presentations were fever, rhinitis, pneumonia, vomiting/diarrhoea, and bronchiolitis. Based on the partial sequences of F fusion gene from 26 HMPV strains, 14 (54%) were subgenotype A2b, which was predominant in 2010; 11 (42%) were subgenotype B1, which was predominant in 2012; and 1 (4%) was subgenotype A2a. Knowledge of the circulating subgenotypes in Malaysia, and the displacement of predominant subgenotypes within 3 years, is useful data for future vaccine planning.

Human metapneumovirus (HMPV), a newly discovered paramyxovirus, was first identified in 2001 from nasopharyngeal aspirates obtained from young children in the Netherlands (van den Hoogen et al., 2001). Since then, infections have been reported worldwide (Garcia et al., 2012; Lamson et al., 2012). It causes a wide range of clinical manifestations ranging from coryza, and bronchiolitis to pneumonia. The virus is approximately 13 kb and divided into eight gene segments, namely N, P, M, F, M2, SH, G and L. There are two major lineages of HMPV, genotypes A and B, based on sequence variations of the fusion (F) and glycoprotein (G) genes. Each genotype has two distinct subgenotypes, A1 and A2, and B1 and B2, and subgenotype A2 can be further divided into A2a and A2b (Yang et al., 2009; Papenburg et al., 2013). Understanding of the clinical characteristics and epidemiology of HMPV is important for the development of HMPV interventions such as vaccines. No data about HMPV infection is available in Malaysia. In this study, we characterized the clinical manifestations and genotypic variation of HMPV detected at University Malaya Medical Centre, a tertiary hospital located in Kuala Lumpur, Malaysia.

All nasopharyngeal aspirates and bronchial washings received from children presenting with acute respiratory infection are routinely screened for respiratory syncytial virus (RSV), adenovirus, influenza
virus, and parainfluenza virus by direct fluorescent-antibody staining (Light Diagnostics, Germany) and viral culture. Between April 2010 to December 2012 (except April and May 2011), samples were also screened for HMPV by direct fluorescent-antibody staining (Light Diagnostics or Diagnostic Hybrids, USA), and cultured in LLC-MK2 cells (ATCC CCL-7) and R-Mix ReadyCells (Diagnostic Hybrids, USA). Nucleic acid was extracted from 140 µL of the HMPV-positive respiratory specimens or virus cultures with the QIAamp viral RNA kit (Qiagen, Germany). RT-PCR was performed using SuperScript III One-Step RT-PCR System (Invitrogen, USA) using primers for the F gene (nucleotide positions 3691-4435 of isolate NL/1/94, GenBank accession no. FJ168778), BF100 5'-CAATGCAGGTATAACACCAGCAATATC-3' and BF101 5'-GCAACAATTGACTGATCTTCAGGAAAC-3' (van den Hoogen et al., 2004). Thermocycling was performed under the following conditions: 50°C for 30 min, 95°C for 3 min, 38 cycles of 94°C for 1 min, 59°C for 1 min and 72°C for 2 min, and finally 72°C for 7 min. Amplified gene fragments were purified and sequenced in both directions using Big Dye terminator cycle sequencing kit (Applied Biosystems, USA) with a 3730xl DNA Analyzer (Applied Biosystems). Sequences were edited and aligned using Geneious v6 (Biomatters, New Zealand). Sequences were deposited into GenBank with accession numbers KJ196300-KJ1963025. These F gene sequences of 563 bp were compared to those available complete genomes of HMPV and also those from neighbouring Asian countries including Singapore, Thailand, Vietnam, Cambodia, Taiwan, South Korea, Japan and China.

The best substitution model was determined using jModelTest v0.1.1 (Posada, 2008) as the transitional model 2 with equal base frequencies and rate variation among sites (TIM2ef+G). Phylogenetic trees were constructed using the Bayesian Markov Chain Monte Carlo method implemented in BEAST 1.7.4 (Drummond & Rambaut, 2007), run for 30 million generations with a 10% burn-in. All runs reached convergence with estimated sample sizes of >200. The tree prior was coalescent GMRF Bayesian Skyride and the clock model was uncorrelated lognormal relaxed. The maximum clade credibility tree (Figure 1) was viewed using FigTree 1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/).

Throughout the study, 3258 non-duplicate samples were tested and 565 (17.3%) were positive for respiratory viruses by immunofluorescence and/or culture. There were 37 (1.1%) samples positive for HMPV. The HMPV patients were aged between 4 months and 15 years, with a median of 1.6 years and a male:female ratio of 1.8:1. Case notes were available for 31 (83.8%) patients, and reviewed following approval by the hospital’s Medical Ethics Committee (reference no. 788.3). All 31 cases were community-acquired. Eight (25.8%) children had underlying medical conditions, including five with prematurity (including two with chronic lung disease, and one each with cerebral palsy and Down's syndrome), and three with asthma. The median length of stay for the 28 admitted to hospital was four days (range, 1 to 64 days). The most common presentations were fever (96.8%), rhinitis (58.1%), pneumonia (51.6%), vomiting/diarrhoea (45.2%), bronchiolitis (32.3%), and pharyngitis (19.4%). A total of 24 (77.4%) patients were treated with antibiotics. None of the patients required intensive care or died.

A total of 26 HMPV samples were successfully sequenced. Phylogenetic analysis of the partial F gene showed that the Malaysian isolates clustered mainly into the two subgenotypes, A2b (54%) and B1 (42%) (Figure 1). A2b was strongly predominant in 2010, making up 11/14 (78.6%) of the sequenced strains, while B1 predominated in 2012, comprising 9/11 (81.8%) of the sequenced strains, while B1 predominated in 2012, comprising 9/11 (81.8%) of the sequenced strains, while B1 predominated in 2012, comprising 9/11 (81.8%) of the sequenced strains, while B1 predominated in 2012, comprising 9/11 (81.8%) of the sequenced strains.
Figure 1. Maximum clade credibility tree based on nucleotide sequences from the partial F gene open reading frame from 26 HMPV-RNA positive clinical specimens, using the Bayesian Markov Chain Monte Carlo method implemented in BEAST 1.7.4. Posterior probability values are shown at the key nodes. The tree was unrooted. Reference sequences were downloaded from GenBank. Each isolate was named as accession number/country/isolate name/year of isolation. All sequenced isolates from this study are in bold.
In a Singapore study, only subgenotype A2 was found (Loo et al., 2007), while in Kolkata, India from 2006-2009, subgenotype A2 predominated with low circulation of subgenotype B1 (Agrawal et al., 2011). A2b was also dominant in southwest China in 2008-2011 (Zhang et al., 2012); however, in Cambodia from 2007-2009, subgenotype B2 predominated with low circulation of subgenotype A2b (Arnott et al., 2013). These studies showed that the circulation of specific subgenotypes was geographically restricted, and was not similar over the Asian region.

The nucleotide similarity amongst our Malaysian A2b and B1 isolates were between 96-100% and 98-100%, respectively. The nucleotide similarity between Malaysian A2b and B1 isolates was only 83 to 84%. Five amino acid substitutions were observed in the sequenced region (Table 1). These amino acid substitutions were genotype-specific mutations also found in other isolates of the same genotype (Yang et al., 2009).

Our study highlights HMPV as an important although relatively infrequent cause of respiratory virus infection in hospitalised children in Malaysia, with prematurity and asthma as the commonest predisposing conditions. HMPV made up 6.5% of the 565 confirmed respiratory virus cases during the study period, compared to RSV (58.2%), adenovirus (12.2%), influenza A and B (11.3%), and parainfluenza viruses (9.4%). The overall HMPV detection rate in children with respiratory infections at our hospital was 1.1%, while the HMPV prevalence rates reported by other countries vary from 0.4-12.7% (Garcia et al., 2012; Qaisy et al., 2012). However, as this study used relatively insensitive conventional detection methods, the numbers of HMPV infections will likely increase if more sensitive molecular methods are used. The differences in circulating subgenotypes from those in neighbouring countries, and the displacement of different genotypes every few years show some similarities to RSV, a related pneumovirus (Khor et al., 2013). Understanding the clinical and molecular epidemiology of HMPV in different countries will be important for the development and subsequent deployment of vaccines. Further studies of emerging respiratory viruses in Malaysia, including HMPV, are currently underway at our centre.

Funding
This study was partly funded by the Fundamental Research Grant Scheme (FP038-2010A) from the Ministry of Education, Malaysia, and High Impact Research Grant (E000013-20001) from University of Malaya.

REFERENCES

Table 1. Comparison of amino acid substitutions in Malaysian human metapneumoviruses

<table>
<thead>
<tr>
<th>Amino acid position in F protein</th>
<th>Subgenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A2a</td>
</tr>
<tr>
<td>287</td>
<td>V</td>
</tr>
<tr>
<td>297</td>
<td>K</td>
</tr>
<tr>
<td>313</td>
<td>Q</td>
</tr>
<tr>
<td>349</td>
<td>K</td>
</tr>
<tr>
<td>405</td>
<td>N</td>
</tr>
</tbody>
</table>

