Rapid genotyping of *Plasmodium vivax Pvs25* and *Pv38* genes by using mismatch specific endonuclease

Jang, J.W.1, Cho, C.H.1, Kim, J.Y.1, Koh, Y.E.1, Woo, M.K.1, Kim, K.A.1, Yoon, S.Y., Lim, M.S.2, Han, E.T.3, An, S.S.A.4 and Lim, C.S. 1*

1Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
2BioMedical Engineering, Korea University, Seoul, Korea
3Department of Parasitology, College of Medicine, Kangwon National University, Chuncheon, Korea
4College of Bionano Technology, Gachon Bionano Research Institute, Kyungwon University, Seongnam, Korea

*Corresponding author email: malarim@korea.ac.kr

Received 7 December 2013; received in revised form 3 April 2014; accepted 3 April 2014

Abstract. Mismatch specific endonuclease (MSE) method was used to detect natural polymorphisms in *Pvs25* and *Pv38* genes of *Plasmodium vivax*. Eighty seven patients with *P. vivax* were recruited in the Republic of Korea (ROK). *Pvs25* and *Pv38* genes were amplified by polymerase chain reaction (PCR), and the PCR amplicons were mixed with reference DNA sequences. Following the denaturation and gradual annealing, the product mixtures were cleaved by the MSE. Heteroduplex types were readily detected by gel electrophoresis, where extra bands with shorter sizes would appear from the cleavage. After MSE cleavage of 657-bp product from *Pvs25* mixtures, three genotypes were detected, while *Pv38* mixtures with 1220-bp products presented two genotypes in ROK isolates. After the MSE cleavage, the mismatched samples of *Pvs25* and *Pv38* were completely sequenced, and the results were in complete agreement with the MSE analyses. In conclusion, genotyping of *Pvs25* and *Pv38* with MSE cleavage could be a potential method for the high-throughput screening of the large field samples.

INTRODUCTION

Plasmodium vivax is the most widespread malaria parasite in human, affecting almost 40% of population worldwide (Guerra *et al*., 2006; WHO, 2010). Although *P. vivax* malaria is rarely lethal, it has large impact on overall morbidity of humans outside of Africa, and it also can lead to severe malaria symptoms (Kocher *et al*., 2005; Ozen *et al*., 2006).

Based on the non-human malaria models, the protective immunity could be formed by targeting the sexual stages of parasites (Carter & Chen, 1976; Gwadz, 1976). Transmission-blocking immunity is effective with antibodies against the surface proteins of the parasite, which are isolated from the midgut of a blood-fed mosquito (Tsuboi *et al*., 2003). In *Plasmodium falciparum*, the surface proteins of the gamete, zygote, and ookinete stages are candidate proteins for the transmission-blocking vaccine (TBV) (Kaslow *et al*., 1988; Kocken *et al*., 1993; Williamson *et al*., 1993). The ookinete surface proteins of *P. falciparum*, *Pfs25* and *Pfs28*, were chosen and further developed as targeted antigens for TBV (Duffy & Kaslow, 1997; Gozar *et al*., 1998). These proteins contain four epidermal growth factor (EGF)-like cysteine-rich domains, which contains an affinity to the surface of the parasite with glycosyl phosphatidylinositol anchor. EGF-like domains are predominantly found in extracellular proteins of eukaryotes, where they usually participate in adhesion and signaling (Appella *et al*., 1988). Majority of amino acid substitutions are found within the EGF-like domains. The analogous proteins...
of Pf525 and Pf528 in P. vivax are Pvs25 and Pv28. Pvs25 has been selected for the development of multitarget/multispecies TBV (Tsuboi et al., 1998). Since Pv38 contains high degree of homology with Pf38, it was recently chosen as a new antigen candidate for TBV (Mongui et al., 2008). Pv38 is encoded by a single exon gene, and is composed of 355 amino acids. Pv38, as surface protein, contains the s48/45 domain, which is found on gametocytes. The association of Pv38 with detergent-resistant membranes and its expression in the mature blood stages of the parasite (mainly schizonts) has been reported (Mongui et al., 2008).

Genetic polymorphism of the surface proteins of P. vivax ookinete stage has been reported from the field samples (Tsuboi et al., 1998, 2004). To develop better TBV against P. vivax, an efficient high throughput screening method for detecting genetic polymorphism should be developed for handling large numbers of samples. Many advanced technologies have been introduced for mutation analyses, such as direct sequencing, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), PCR-single stranded conformational polymorphism (SSCP), real-time single-nucleotide polymorphism (SNP) analysis, high resolution melting curve analysis, and whole genome analysis. However, these methods are expensive or need special instruments, where large quantities of unnecessary data could be produced. Presently, no reliable and efficient method is available to detect mutations and polymorphism by utilizing their electrophoretic properties.

Mismatch specific endonuclease (MSE) belongs to the CEL family of plant endonucleases, which can cleave mismatched base substituted or distorted sites within DNA with high specificity (Oleykowski et al., 1998; Yang et al., 2000). When mutant and wild-type alleles are mixed, heated, and then annealed to form heteroduplexes, MSE can cleave the heteroduplex fragments. Here, MSE method was performed to detect natural polymorphism in Pvs25 and Pv38 genes of P. vivax.

MATERIAL AND METHODS

Subjects and sample collection
A total of 87 patients with P. vivax were recruited between 2006 and 2011 at the Korea University Guro Hospital (Seoul, Republic of Korea). Patients had fever or recent history of fever at the time of blood smear preparations. All patients gave written informed consent under the approved protocol, which was reviewed and approved by the Korea University Guro Hospital. All samples were frozen at -80°C until further use.

Extraction of the genomic DNA
After thawing samples from -80°C, the genomic DNA was extracted from whole blood or packed cells using AxyPrep Blood Genomic DNA Miniprep kit (Axygen Bioscience, Union City, CA, USA).

PCR of the Pvs25 and Pv38 genes
Pvs25 and Pv38 genes of P. vivax were amplified by PCR using oligonucleotide primers as listed (Fig. 1), Pvs25 F2: 5’-CACCGACCACAAAAACTTAT-3’ (158-178, AF083502), Pvs25 R2: 5’-AACGTAAAGCCTTCCATACA-3’ (785-814, AF083502), Pv38 F2: 5’-GTAGAGGTACCCCCGCGTAG-3’ (129184-129203, CM000444), Pv38 R2: 5’-ATTAACGCAGCTTCGCAACG-3’ (130384-130404, CM000444). Primers were used with a final concentration of 0.1 µM in a 100 µL reaction mixture (10 mM Tris-HCl, pH 8.3, 50 mM KCl, 1.5 mM MgCl₂, 0.2 mM of each dNTP), containing 10 µL of DNA and 2.5 units of ExTaq polymerase (Takara Shuzo, Shiga, Japan). Reaction mixtures underwent 30 cycles of amplifications: denaturation for 30 seconds at 95°C, annealing for 30 seconds at 58°C, and extension for 1 minute at 72°C in a thermocycler (Mastercycler gradient, Eppendorf, Hamburg, Germany). Amplified PCR products were resolved by electrophoresis on 2% agarose gels, containing ethidium bromide at 0.5 mg/mL.
Polymorphism detection using mismatch specific endonuclease (MSE)

Mismatch specific endonuclease (MSE) in SURVEYOR Mutation Detection Kit (Transgenomic) was used to detect polymorphisms in the *Pvs25* and *Pv38* genes. Before the nuclease digestion, PCR products were both self-hybridized and cross-hybridized with the amplified reference DNA. If the DNA sample was heterozygous with mutation(s), self-hybridization would produce DNA heteroduplexes. Next, if the DNA sample contained homozygous mutation(s), cross-hybridization with the amplified reference DNA would also produce heteroduplexes. Hence, the resulting heteroduplexes with sequence deviations between the wild type samples and the reference sequence would contain mismatches, then these mismatches would be cleaved by MSE.

Equal amount of PCR-amplified reference DNA (KPV10-11-1 for *Pvs25* and *Pv38* each) and unknown PCR products were mixed and hybridized directly. The hybridization was performed in a PCR thermocycler using the following program: 95°C for 2 minutes; 95°C to 85°C with a cooling rate of 2°C/sec; 85 to 25°C with a cooling rate of 0.2°C/sec; and held at 4°C. Hybridized DNA (5 µL) was digested by adding 1 µL of MSE directly into the PCR reaction buffer at 42°C for 20 minutes. Digestion controls were used, according to the manufacturer’s instructions. The incubation was terminated with an addition of 1/10 volume of ethylenediaminetetraacetic acid (0.5 M, pH 8.0). Digestion products were analyzed with agarose gel (2%) electrophoresis. Nucleotide changes or mutations would reveal digested fragments from heteroduplexes. Mutations were confirmed from the DNA sequencing analysis.

Sequencing

The targeted PCR products were purified using the Qiagen PCR Cleanup kit (Qiagen, Valencia, CA, USA), and sequenced using the BigDye Terminator DNA sequencing kit (Applied Biosystems, Foster City, CA, USA). Sequencing was performed in an ABI Prism 3100 genetic analyzer (Applied Biosystems). Sequencing data of the *Pvs25* and *Pv38* genes were compared with MSE cleavage patterns for confirmation. The sequences were submitted to GenBank with accession numbers JF427569, JF427570 and GU971416 to GU971513.

RESULTS

Pvs25 and Pv38 gene mutation using mismatch specific endonuclease

Amplified *Pvs25* gene fragments of 657 bp were generated from 87 *P. vivax* isolates.
After the MSE cleavage, different amplicon patterns were analyzed in parallel with 2% agarose gel electrophoresis. Three allelic variants were observed from the enzyme digestion in comparison to the reference DNA sequences. Twenty-seven Korean isolates revealed no cleavage products. Forty-nine isolates had cleavage products with 271 bp and 386 bp long. Eleven isolates had four cleavage products; 151 bp, 271 bp, 386 bp, 506 bp (Fig. 2).

From the PCR amplification of *Pv38*, a 1,220 bp product was identified, and after MSE cleavage, two allelic variants were identified in comparison to the reference DNA sequences. Fifty-three Korean isolates had no cleavage products. The other thirty-four isolates produced cleavage products of 558 bp and 662 bp long (Fig. 2).

Pvs25 and Pv38 sequence confirmations

Of the 87 samples, 3 allelic types were found for *Pvs25*, based on two nucleotide substitutions. The locations of the mutations were at nucleotide position number 386 with G/C and 488 with C/A substitutions, resulting in amino acid changes at position 97 from Glu to Gln (E97Q), and at position 131 from Gln to Lys (Q131K), respectively, in comparison to the reference DNA (AF083502). For locating polymorphism in *Pv38*, two patterns emerged from the 87 samples, resulting from nucleotide substitutions at C558A in comparison with

Figure 2. Identification of polymorphism by mismatch specific endonuclease (MSE) method in *Pvs25* (A), using test sample and control DNA. M: 100 bp DNA ladder, Lane 1, 4, 8: Type A without cleavage (657 bp), Lane 2, 3, 5, 6, 7, 9: Type B with a cleavage site (271 bp + 386 bp), Lane 10 Type C with two cleavage sites (151 bp + 271 bp + 386 bp + 506 bp). *Pv38* gene revealed two cleavage patterns after MSE reaction (B): Lane 1, Type A without cleavage (1,220 bp); Lane 2, 3 Type B with a cleavage site (558 bp + 662 bp).
reference strain (JF427569) (Table 1). Polymorphism in Pvs25 and Pv38 genes from the isolates are summarized in Table 1. Sequencing analyses provided complete agreements with the results from the MSE digestion.

DISCUSSION

To achieve prevention or elimination of malaria infections, chemotherapies or vector control would not be sufficient to control the disease, because of emerging drug resistant parasites and insecticides resistant mosquitoes. In this regard, TBV appears to be a promising strategy for disrupting the transmission of P. vivax and P. falciparum (Stowers & Carter, 2001; Tsuboi et al., 2003). If the TBV is successful, it could improve global public health by reducing the mortality and prevalence of malaria.

Pvs25, Pvs28, Pv38, and Pv41 have been recognized as leading candidates of TBV programs (Sattabongkot et al., 2003; Malkin et al., 2005; Mongui et al., 2008; Angel et al., 2008). These proteins contain conserved structures such as four EGF-like domains (Tsuboi et al., 1998). For the development of an effective TBV against diverse P. vivax isolates in endemic regions, an efficient screening method to monitor the polymorphism in Pvs25 and Pv38 is required.

Among many advance molecular techniques to detect SNPs and mutations in large number of samples, MSE digestion would offers the efficiency and high throughput capability in determining malaria polymorphisms. MSE cleaves the 3' side of any mismatch site in both DNA strands, including all base substitutions and insertion/deletions. In comparison to PCR-RFLP or PCR-SSCP, the MSE method would have relatively better sensitivity, which could detect 1 in 32 copies of SNP.

Here, the MSE method determined the genotype variation of Pvs25 and Pv38 genes in 87 Korean P. vivax isolates. Three and two different sequence variations in Pvs25 and Pv38 genes were identified, respectively. These results are in full agreement with nucleotide sequencing analyses (Table 1). Moreover, the MSE procedure was rapid and relatively easy in producing reproducible and specific patterns. The method can be applied on longer fragments (Mitani et al., 2006). However, the MSE method requires sufficient amount of clean PCR amplicons to yield precisely cleaved DNA fragments. It has high sensitivity in resolving samples with low parasitemia levels. Another advantage of MSE method in comparison to PCR-RFLP is its ability to detect polymorphisms that are close to each other in the gene, which are not able to be distinguished by agarose gel. Furthermore, while PCR-RFLP uses different restriction enzymes for each specific gene analysis, MSE method utilizes only one endonuclease system. The weakness of the MSE method is the requirement of known reference samples, but this can be overcome by various available reference DNA sequences. In addition, MSE method does not need expensive instruments. Therefore, its application could be extended to identify diverse malaria species, to differentiate

<table>
<thead>
<tr>
<th>Polymorphism location</th>
<th>MSE pattern</th>
<th>Polymorphism location</th>
<th>MSE pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF083502</td>
<td>386 488</td>
<td>JF427569</td>
<td>558 559</td>
</tr>
<tr>
<td>Polymorphism location</td>
<td>MSE pattern</td>
<td>Polymorphism location</td>
<td>MSE pattern</td>
</tr>
<tr>
<td>AF083502</td>
<td>386 488</td>
<td>JF427569</td>
<td>558 559</td>
</tr>
<tr>
<td>Type A</td>
<td>C C</td>
<td>Type A</td>
<td>C T G</td>
</tr>
<tr>
<td>Type B</td>
<td>G C</td>
<td>Type B</td>
<td>A T G</td>
</tr>
<tr>
<td>Type C</td>
<td>G A</td>
<td>Type C</td>
<td>T G</td>
</tr>
</tbody>
</table>

TABLE 1. Comparison of Pvs25 and Pv38 gene sequences from Korean Plasmodium vivax isolates, which were in full agreement with the polymorphism analyses by mismatch specific endonuclease (MSE) method.
various infections from mixed species, or to detect unknown drug resistance genes in field samples.

In this study, MSE was used for the first time in analyzing Pvs25 and Pv38 genotypes, demonstrating its vast potential in high-throughput screening of large field samples. Therefore, MSE method can be used to detect genetic polymorphism for developing various TBV candidates prior to field trials with the given targeted antigens.

Acknowledgements. This study was supported by a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (Grant No. H113C2262). Jang, J.W. and Cho, C.H. contributed equally to this study.

Conflicts of interest
The authors have declared that no conflict of interest exists.

REFERENCES

